thiazolidineacetic acid, formed by quantitative paper chromatography using ninhydrin as the color reagent. From a suitable batch of reaction mixture 6-aminopenicillanic acid (II) has been isolated by absorption on IR-120 (H+), elution with NH₄-OH at pH 7.0, concentration in vacuo, and adjusting the pH to 4.4. The recrystallized product had m.p. $207-208^{\circ}$ (dec.) and $[\alpha]_{D^{25}} + 277$ (C 1.0 in 0.1 N hydrochloric acid).5 It assayed approximately 2750 u./mg. based on sodium benzylpenicillin by the hydroxylamine colorimetric procedure⁶ and by microbiological determination after phenylacetylation¹ (theor., 2752 u./mg.). Acylation of (II) with the appropriate acid chlorides in aqueous acetone buffered at pH 7.0 to 7.5 has given good yields of crystalline potassium salts of benzylpenicillin and phenoxymethylpenicillin, which are identical in all respects to the product prepared by fermentation.

Both phenoxymethylpenicillin (V) and allylmercaptomethylpenicillin (O) are hydrolyzed by this microbial acylase system. Details on the distribution of this acylase in microörganisms, and its activity on a series of penicillins, including a large number of new semi-synthetic penicillins will be reported elsewhere.

(5) J. C. Sheehan and K. R. Henery-Logan, THIS JOURNAL, 81, 5835 (1959), report [α]³¹D +273 (C 1.2 in 0.1 N hydrochloric acid).
(6) G. Boxer and P. M. Everett, Anal. Chem., 21, 670 (1949).

	\mathbf{H} . T. Huang
RESEARCH LABORATORIES	A. R. English
CHAS. PFIZER & CO., INC.	Т. А. S ето
GROTON, CONNECTICUT, AND	G. M. Shull
Maywood, New Jersey	B. A. Sobin
RECEIVED MAY 28, 1960	

SEPARATION OF ALKALOIDS BY GAS CHROMATOGRAPHY

Sir:

In the past, the separation of alkaloids from crude alkaloid mixtures has depended upon fractional crystallization, precipitation, countercurrent extraction and either adsorption or liquid phase partition chromatography. Several recent communications have reported the use of gas phase chromatographic techniques for the separation and identification of steroids^{1,2} and high molecular weight fatty primary amines.³ This communication demonstrates the feasibility of this method for the isolation, separation and identification of alkaloids. Our attention has been focused on alkaloids with molecular weights above 250, since suitable modifications of the conditions should permit separations of lower molecular weight substances without difficulty.4

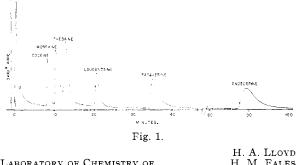

Alkaloids listed in the table gave single component sharp peaks, consistent with the absence of decomposition. A typical sample was $1-3 \ \mu$ l. of a 0.5-1.0% solution of the alkaloid in methanol, acetone or chloroform. In several cases (Nmethylcytisine, crinine, ibogaine and solanidine) macro samples were chromatographed and the

TABLE I Alkaloid Retention Times

	DOID THE		
Compound	Time, min. ^{a,b}	Compound	Time, min. ^{a,b}
1. Lupin alkaloid	s	Neopine	9.1
Cytisine	5.1	Papaverine	35.3
Methylcytisine	4.3	Thebaine	13.2
Methylcytisine N-		4. Indole Alkaloids	
oxide	5.8		
Lupanine	5.5	Brucine	80.0 ^c
13-Hydroxylupanine	11.6	Coronaridine	8.2°
Matrine	8.5	Ibogamine	15.4
Lupinine	1 , 5^d	Ibogaine	35.1
Sparteine	5.9^{d}	Serpentine	16.8^{c}
α-Isosparteine	5.2^d	Strychnine	25.9^{c}
13-Hydroxysparteine	14.3^d	Voacangine	40.3
		5. Steroidal alkaloids	
2. Amaryllidaceae	e	Solanidine	$40.6^{c,c}$
Galanthine	19.0	Solasodine	$74.3^{c,c}$
Acetylcaranine	10.5	Tomatidine	77.3 ^{c,e}
Lycorenine	10.6		
Galanthamine	7.8	Miscellaneou	15
Crinine	9.5	Atopine	3.0
Powelline	15.8	Caffeine	1.6
Tazettine	15.2	Cinchonine	6.7°
Belladine	8.7	Cocaine	4.8
		Corydaline	16.2^{c}
Papaveraceae		Cryptopine	50.8
Codeine	8.2	Himbacine	12.7^c
Gnoscopine	90.6	Piperine	33.0
Laudanosine	21.0	Protopine	44.7
Morphine	11.0	Quinine	11.8^{c}
^a Argon ionization	detector.	$6 \text{ ft} \times 4 \text{ mm} \text{ id}$	columns.

 a Argon ionization detector, 6 ft. \times 4 mm. i.d. columns. b Pressure 15 psi., 2–3/100 SE-30 on Chromosorb W, 80–100 mesh, temperature 204° unless otherwise noted. c Temperature 222°. d Temperature 160°. e Pressure 10 psi.

product was identified as unchanged starting material by standard methods. The power of this analytical tool is illustrated in a separation of *Papaveraceae* alkaloids (Fig. 1).

LABORATORY OF CHEMISTRY OF NATURAL PRODUCTS NATIONAL HEART INSTITUTE BETHESDA 14, MARYLAND RECEIVED JUNE 16, 1960

THE ENTROPY OF ACTIVATION OF ADDITION OF METHYL RADICALS TO UNSATURATED COMPOUNDS POSSESSING THE SAME REACTION CENTER¹

Sir:

Addition of methyl radicals to ethylene,² propylene,² isobutene,² styrene,³ α -methylstyrene,³ butadiene⁴ and isoprene⁴ was studied in this

⁽¹⁾ W. J. A. VandenHeuvel, C. C. Sweeley and E. C. Horning, THIS JOURNAL, **82**, 3481 (1960).

⁽²⁾ R. K. Beerthuis and J. H. Recourt, Nature, 186, 372 (1960).

⁽³⁾ J. Nelson and A. Milun, Chemistry & Industry, 663 (1960).

⁽⁴⁾ Cf. L. D. Quin, J. Org. Chem., 24, 911 (1959).

⁽¹⁾ This work was supported by a grant from the National Science Foundation.

⁽²⁾ R. P. Buckley and M. Szwarc, *Proc. Roy. Soc.*, A240, 396 (1957).
(3) F. Leavitt, M. Levy and M. Szwarc, THIS JOURNAL, 77, 5493 (1955).

⁽⁴⁾ A. Rajbenbach and M. Szware, Proc. Roy. Soc., A251, 1206 (1959).